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† Laboratorio de Imágenes Médicas, Departamento de Ingenierı́a
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Abstract—Inverse scattering methods for density imaging have
limitations in terms of required signal-to-noise ratio and band-
width that keep them from being experimentally implemented.
The multiple frequency distorted Born iterative method (MF-
DBIM), has been previously proposed to overcome some of these
limitations. The objective of this work is to study the conver-
gence of MF-DBIM through both simulations and experiments.
Simulations were conducted by reconstructing circular cylinders
of radii 1, 2, and 4 wavelengths, and ratios of density ∆ρ
to sound speed ∆c contrasts between -3 and 2. Experiments
were performed using a balloon phantom filled with saline and
frequencies between 1.5 and 3 MHz. Two methods for stabilizing
MF-DBIM were studied: total variation regularization (TVR),
and weighted TVR giving emphasis to the variation of the pixels
around the edges of the imaging target. In simulations, the
convergence of MF-DBIM was found to be dependent on the
imaging target. For cylinders with ∆ρ/∆c < 0 reconstruction
errors were typically below 30%. The errors were significantly
higher (i.e., up to 70% minimum reconstruction error) for
cylinders with ∆ρ/∆c > 0. The degraded performance of MF-
DBIM was related to the limited spatial bandwidth of the
inverse scattering problem. In experiments, calibration errors
did not allow reconstruction of useful density tomograms when
using MF-DBIM. Density tomograms with 56% reconstruction
errors were obtained with MF-DBIM and TVR, but only for a
very narrow range of regularization parameters. In contrast,
reconstruction errors between 55% and 60% were obtained
with MF-DBIM and weighted TVR for regularization parameter
values spanning more than an order of magnitude. Therefore,
preliminary experimental results presented here suggest auxiliary
techniques such as weighted TVR may help extending the
convergence of tomographic density imaging algorithms.

I. MOTIVATION

Acoustic tomography is a quantitative imaging technique
that aims to reconstruct material properties based on scat-
tered pressure measurements. Typically, density changes are
neglected in order to obtain estimates of speed of sound
and attenuation [1]. However, actual values of density and
compressibility are not known for many disease states and
therefore determining density distributions may provide addi-
tional information or contrast in imaging for cancer detection.

Inverse scattering methods for density imaging can be
roughly classified in two categories. The first approach con-
sists of inverting the wave equation by solving for a single
functional that depends on both speed of sound and density

variations, and using data at two frequencies to isolate density
information [2]. The second approach consists of solving the
wave equation for two functionals simultaneously: one that
depends only on compressibility and one that depends only
on density variations [3]. It has been previously reported
that both approaches have limitations that keep them from
practical experimental implementations [4]. In particular, the
first approach (as exemplified by the dual frequency distorted
Born iterative method, DF-DBIM) was found to be very
sensitive to the termination tolerance of the single frequency
reconstructions, and the second approach (as exemplified by
the T-matrix approach) was found to require a very large band-
widths. An improved approach, the multiple frequency DBIM
(MF-DBIM) algorithm [5], has been previously proposed to
overcome some of these limitations. The objective of this
work is to study the convergence of MF-DBIM through both
simulations and experiments.

II. METHODS

A. Variable density and the distorted Born iterative method

The inhomogeneous wave equation can be written as [4]

p(~r) = es(~r) +
∫

Ω

d~r ′O(~r ′, ω)p(~r ′)G0(~r, ~r ′), (1)

where p(~r) is the acoustical pressure, es(~r) is the incident
field caused by a source located at ~rs, s = 0, 1, ..., Ns,
and G0(~r, ~r ′) is the Green’s function in a homogeneous
background with wave number k0. Assuming the speed of
sound c(~r) is weakly dispersive and neglecting attenuation for
simplicity, the object function O(~r, ω) is given by

O(~r, ω) =
[
ω2

c2(~r)
− ω2

c20

]
− ρ1/2(~r)∇2ρ−1/2(~r). (2)

where ρ(~r) is the density distribution, ω is the angular fre-
quency of the incident harmonic wave, and c0 is the sound
speed in the background. Equation (1) was discretized using
sinc basis functions and delta testing functions. The DBIM
[6] is an algorithm that estimates O(~r, ω) using (1) and mea-
surements of the scattered field psc(~r) = p(~r)− es(~r), ~r /∈ Ω.
A trial Ō(0) is chosen for which the corresponding scattered
field is calculated. Next, the object function is updated as



Ō(n+1) = Ō(n) + ∆Ō(n), where ∆Ō(n) is given by the
regularized optimization problem

∆O(n) = arg min
∆O

||∆p̄sc − F̄(n) ·∆O||22 + γ||∆O||22, (3)

where ∆p̄sc contains the difference between the predicted and
measured scattered fields, γ is the regularization parameter,
and F̄(n) is the so-called Frechet derivative matrix [1]. The
iterative process is repeated until the relative residual error
(RRE), given by RRE = ||∆p̄sc||2/||p̄sc||2, falls within a
desired termination tolerance t%.

B. The multiple frequency DBIM (MF-DBIM) algorithm

If a set of reconstructions Oi(~r) = O(~r, ωi) at frequencies
ωi, i = 1, 2, ..., Nf are available, the least mean squares
estimator
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(
Nf∑
i=1

ω2
i

)(
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iOi(~r)

)
−

(
Nf∑
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ω4
i

)(
Nf∑
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Oi(~r)

)

Nf
Nf∑
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ω4
i −
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Nf∑
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i

)2

(4)
allows for the isolation of density contributions Fρ =
ρ1/2(~r)∇2ρ−1/2(~r) to the object function. After estimating
Fρ, density images can be constructed by solving(

L −D(F̄ρ)
)
· ū = Ḡ · ū = F̄ρ (5)

where ū is a vector with the values of u(~r) =
(
ρ
−1/2
r (~r)− 1

)
,

F̄ρ is a vector with the values of Fρ(~r), L is a matrix
approximation of the ∇2 operator, and D is an operator that
transforms a vector into a diagonal matrix.

Frequency hopping [7], i.e., the use of lower frequency
reconstructions as initial guesses for higher frequency recon-
structions, was used to improve on the cancellation of the
speed of sound term in (2). The DBIM initial guess when
processing data at frequency ωi was chosen as

O(0)

MF-DBIM(~r, ωi) = β

(
ωi
ωi−1

)2

O(~r, ωi−1), (6)

where where O(~r, ωi−1) is the final reconstruction obtained
at the nearest lower frequency ωi−1 and β = (1− 1.5t%).

The multiple frequency DBIM (MF-DBIM) [5] consists
of using (4) with profiles obtained at frequencies f ∈
[fmin, fmax] in steps of ∆f = fmax−fmin

Nf−1 , and (6) as DBIM
initial guess. A conventional 2D median filter of size 3 by
3 pixels was used to smooth O(0)

MF-DBIM(~r, ωi). Frequency
hopping improves on the correlation among all profiles except
the one obtained at frequency fmin, which is obtained using an
all-zero initial guess and therefore requires special treatment.
In this work, the data at fmin was processed twice. The first
time a profile O′(~r, ωmin) was obtained by using an all-zero
initial guess. The second time, the final profile O(~r, ωmin)
was obtained by using βO′(~r, ωmin) as initial guess.

C. Regularized MF-DBIM

Regularization can be used to stabilize the solution of (5).
The generalized Tikhonov regularization consists of solving
the optimization problem [8]

û = arg min
ū

||F̄ρ − Ḡ · ū||22 + γR

N∑
i=1

(
|(L̄ · ū)i|2 + β

)k/2
,

(7)
where γR is a regularization parameter and β is a small
positive constant (β = 10−10) introduced to avoid gradient
singularities. The solution û to Eq. (7) is given by

û =
[(
ḠH · Ḡ+ γL̄H · D

(
W̄β(û)

)
· L̄
)−1

ḠH
]
F̄ρ, (8)

where W̄β(û)i = k
2

((
|(L̄ · û)i|2 + β

)k/2−1
)

. Starting with

an initial guess û(0), the nonlinear equation (8) can be solved
using the fixed point iteration

û(n+1) =
[(
ḠH · Ḡ+ γL̄H · D

(
W̄β(û(n))

)
· L̄
)−1

ḠH
]
F̄ρ.

(9)
This process is stopped when the difference in the l2 norm
between successive iterations is small enough, that is, until
||û(n+1) − û(n)||22/||û(n+1)||22 < δ, where δ is the desired
tolerance. In particular, two regularization schemes were stud-
ied: (1) total variation regularization (TVR), i.e., k = 1 and
L̄ = D̄ with D̄ the gradient operator, and (2) weighted TVR,
i.e., k = 1 and L̄ = W̄ · D̄ with W̄ a matrix that penalizes
regions where the object functionO(~r, ωmax) is more uniform.
In particular, W̄ was set to a two-level function set to 1
at points within 0.75λ from the discontinuities of the ideal
density profiles, and 10 otherwise.

III. RESULTS

A. Simulations

In order to systematically assess the performance of the
MF-DBIM approach, circular cylinders of radii λ, 2λ, and 4λ
and excess phase ∆φmax (i.e., the phase accumulated by the
incident wave when traveling through the scatterer as opposed
to the background) values of 0.9π, −0.45π, and 0.225π were
reconstructed through simulations. The density contrast ∆ρ of
the cylinders was varied between −3∆c and 2∆c, where ∆c is
the speed of sound contrast. fmin was varied between 0.1fmax
and 0.9fmax. The synthetic data was contaminated with 2%
random Gaussian noise. Five noise realizations per simulation
setting were used and the resulting root mean square error
(RMSE) mean was calculated. The results are presented in
Fig. 1.

The object functions O(~r, ωmax) corresponding to circular
cylinders with radius 2λ, ∆φmax = 0.9π, and ∆ρ = −∆c and
∆ρ = ∆c were obtained using DBIM at frequency fmax. The
Fρ(~r) profiles were estimated by subtracting the known sound
speed dependent term from the reconstructed O(~r, ωmax)
profiles. The ideal profiles for O(~r, ωmax) and Fρ(~r) were
calculated using (2) with the ∇2 operator implemented using
a sinc-based filter. The results are presented in Fig. 2.
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Fig. 1. Mean RMSEs when reconstructing density profiles of homogeneous circular cylinders with ∆φmax = 0.9π (first row), -0.45π (second row), and
0.225π (third row), and radii λ (left column), 2λ (center column) and 4λ (right column) using MF-DBIM. The SNR was set to 34 dB.
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Fig. 2. Expected (solid) and reconstructed (dashed) Fρ(~r) (left) and
O(~r, ωmax) (right) profiles from circular cylinders of radius 2λ, ∆φmax =
0.9π, and ∆ρ = −∆c (top) and ∆ρ = ∆c (bottom).

B. Experiments

Initial attempts to reconstruct density profiles experimen-
tally were conducted. The imaging target was chosen to be
a rubber balloon filled with saline (6 g of salt per 100 mL
of water). The resulting speed of sound of the saline was
measured to be 1.55 mm/µs using time of flight measurements
with two matched 10 MHz transducers. The balloon thickness
and speed of sound were measured to be 0.23 mm and 1.56
mm/µs using a 20 MHz transducer in reflection mode. The
relative density of the balloon was measured to be 0.91 by
comparing the amplitude of the reflection from the balloon
to that obtained from a plexiglass block. The relative density
of the saline solution was measured to be 1.05 by weighing
a 10 mL syringe filled with saline versus water. The outer

diameter of the inflated balloon was measured to be 7.6 mm
using calipers. The experiments were performed in water at
approximately 22.1 ◦C. Two independent, single element, rect-
angular 5 MHz transducers were used for measuring psc(~r):
one for transmission and one for reception. Both transducers
were focused on elevation (f#=8) with a nominal focal depth
of 8 cm. The transmitter was kept in a fixed location and
the receiver was rotated around the imaging target for a total
angular coverage of 240◦. MF-DBIM reconstructions were
obtained by processing scattered data between 1.5 and 3
MHz. The reconstruction error curves are presented in Fig.
3 using both TVR and weighted TVR. The radial profile of
the optimum MF-DBIM reconstruction using weighted TVR
is also shown.

Fig. 3. Left: experimental error curves using MF-DBIM and TVR (solid line)
and weighted TVR (dashed line). Right: ideal (dashed line) and optimum
reconstructed MF-DBIM and weighted TVR (solid line) density profiles.

IV. DISCUSSION

A. Simulations

A marked difference in the performance of MF-DBIM was
observed in Fig. 1 when ∆ρ/∆c > 0 rather than ∆ρ/∆c < 0.



Whereas in the latter case proper convergence (reconstruction
RMSEs < 30%) was obtained by using fmin values less than
an order of magnitude smaller than fmax, in the former case
the errors were significantly larger for comparable magnitudes
of ∆ρ changes. In Fig. 2 the reconstructed Fρ(~r) function for
the case ∆ρ = −∆c was very consistent with the expected
profile, i.e., sharp discontinuities were observed at the edges
of the cylinder. In contrast, and although the expected Fρ(~r)
profile should be almost identical up to a sign change and
slight amplitude variation, the Fρ(~r) estimate when ∆ρ =
∆c appeared completely distorted and exhibited ringing that
extended beyond the edges of the imaging target.

More insight into the nature of the MF-DBIM reconstruction
errors can be obtained by analyzing the O(~r) plots in Fig. 2.
For the ∆ρ = −∆c case, the destructive interaction between
the sound speed and density terms resulted in a smooth
ideal O(~r) function and the DBIM properly converged to an
approximate solution that accurately captured density effects.
In contrast, the ideal O(~r) function for the ∆ρ = ∆c case
exhibited sharp variations that DBIM had more difficulties
reproducing given its limited spectral support [9]. Increasing
|∆φmax| made the inverse scattering problem more nonlinear
and therefore exacerbated the convergence to improper solu-
tions given the lack of sensitivity of DBIM to high spatial
frequencies. This can explain the increased instability of the
reconstructions for ∆ρ/∆c > 0 as |∆φmax| increased.

Given that all inverse scattering algorithms based on far
field measurements are bandwidth limited, the limitations
of MF-DBIM are expected to be shared by other inverse
scattering algorithms. The T-matrix approach [3] was used
to create density images corresponding to cylinders with
∆φmax = 0.9π and radius 2λ. The reconstruction errors are
presented in Fig. 4. The results indicated that the T-matrix
approach also has difficulties when imaging homogeneous
cylinders with ∆ρ/∆c > 0, and therefore supported the
hypothesis that the spatial bandwidth of the imaging target
impacts the performance of tomographic density imaging.

Fig. 4. Mean RMSEs when reconstructing density profiles of homogeneous
circular cylinders with ∆φmax = 0.9π and radius 2λ using the T-matrix
approach. The SNR was set to 34 dB.

B. Experiments
Although the signal-to-noise ratio in the measurements was

estimated to be better than 40 dB, the MF-DBIM recon-
struction was largely unsuccessful (reconstruction error around
1000%). This result suggests that experimental calibration
errors may play an important role on the success of den-
sity imaging algorithms. Using the same experimental data,

both explored regularization schemes resulted in reconstruc-
tion errors less than 60%. Although density tomograms with
56% reconstruction errors were obtained with MF-DBIM and
TVR, the range of regularization parameters that resulted in
comparable errors was very narrow. Therefore, even a slight
error in selecting an appropriate γR value could result in
severe reconstruction degradation. In contrast, reconstruction
errors between 55% and 60% were obtained with MF-DBIM
and weighted TVR for regularization parameter values span-
ning more than an order of magnitude. Therefore, weighted
TVR appears to be a more robust mechanism for stabilizing
MF-DBIM. Further work is required in order to determine
appropriate, general methods to determine γR and W̄ .

V. CONCLUSIONS

Although MF-DBIM was capable of obtaining density im-
ages with reduced noise sensitivity and total bandwidth when
compared to previously available methods, its performance de-
graded when scatterers with large spatial frequency variations
in their object function profiles were imaged. However, pre-
liminary experimental results presented here suggest auxiliary
techniques such as weighted TVR may help extending the
convergence of tomographic density imaging algorithms.
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